Extractive Summarization of Long Documents by

Combining Global and Local Context

Wen Xiao and Giuseppe Carenini
University of British Columbia Department of Computer Science
xiaowen3@cs.ubc.ca

$1: We also ran an ablation study to assess the relative contribution of the

Decoder global and local components of our approach.
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$2: In this paper, we propose a novel extractive summarization model

especially designed for long documents, by incorporating the local context
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. By By =S | B an additional experiment, in which we consider documents with increasing

Raspec within each topic, along with the global context of the whole document.
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[f2,03] 15,06} Our approach integrates recent findings on neural extractive

315 summarization in a parameter lean and modular architecture.

54: We evaluate our model and compare with previous works in both extractive

and abstractive summarization on two large scientific paper datasets, which

srf__sr2 st srd contain documents that are much longer than in previously used corpora.

Our model not only achieves state-of-the-art on these two datasets, but in
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length, becomes more competitive for longer documents.
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B global and the local model we found that, rather surprisingly, the benefits of
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56: Furthermore, in an ablation study to assess the relative contributions of the

our model seem to come exclusively from modeling the local context, even
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for the longest documents.

S7: This is a very challenging task, because it arguably requires an in-depth

understanding of the source document, and current automatic solutions are
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still far from human performance.
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*Top 7 sentences with the highest confidence scores

Statistics of popular summarization datasets

Overall results on the Pubmed and arXiv datasets Datasets | # docs | avg. doc. length | avg. summ. length
CNN 92K 656 43
Model Rouge-1 Rouge-2 Rouge-L Meteor Daily Mail | 219K 693 J2
Best Traditional Ext *  33.85  10.73 _ 28.99 - NY Times | 655K 530 38
Best Neural Abs* 3580  11.05  31.80 - Fwiad. | Lok 3016 203
Baseline 4201 1665 2853 2135 arXiv | 215K 4938 220
Cheng & Lapata 42.24 15.97 27.88 20.97 *lengths are In terms of words
SummaRuNNer 42 .81 16.52 28.23 21.35 @ : :
Ours-attentive context  43.58 17.37 29.30 21.71 % ngher Gains for Longer Documents
Ours-concat 43.62 17.36 20.14 21.78 ™ 0 o
Lead 33.66 894 2219  16.45 57.5- o SummaRuer | ey
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Boselne 129 1017 3089 2056 e e ™
Cheng & Lapata 43.89 18.53 30.17 20.34 - ———— = —
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Results that are not significantly distinguished from the best systems are bold. 0-3000

For models with an *, we report results from (Cohan et al., 2018).

Ablation Study

Model  ROUGL-1(+l/+g) ROUGE-2(+l/+g) ROUGE-L(+l/+g) e On both datasets the performance significantly improves when local topic information (i.e.
BSL 42 .91 (na/na) 16.65 (na/na) 28.53 (na/na) local context) added.

BSLA1 43,57 (+.66/na) 17.35 (+.7/na) 29.29 (+.76/na) e The improvement is even greater when we only consider long documents.

BSL+¢ 42.90 (na/-.01) 16.58 (na/-.07) 28.36 (na/-.17) . _ . o

BSL+l+g  43.58 (+.68/+.01) 17.37 (+.79/+.02) 29.30 (+.94/+.01) = e Adding a representation of the whole document (i.e. global context) never significantly
BSL 42.95 (na/na) 14.85 (na/na) 28.66 (na/na) © improves performance.

BSL+I1 44.01 (+1.06/na) 15.95 (+1.1/na) 29.68 (+1.02/na)

BSL+¢ 43.05 (na/+.1) 14.91 (na/+.06) 28.57 (na/-.09)

BSL+l+g 44.17 (+1.12/+.16) 16.01 (+1.1/+.06) 29.72 (+1.15/+.04)
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* Similar results on Pubmed
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