
Point Cloud Generation via Variational Auto-encoder

Wen Xiao
Department of Computer Science
University of British Columbia

xiaowen3@cs.ubc.ca

Zhenan Fan
Department of Computer Science
University of British Columbia

zhenanf@cs.ubc.ca

Qiuyan Liu
Department of Computer Science
University of British Columbia

floraliu@cs.ubc.ca

Abstract

In this project, the problem of generating point clouds
is examined using VAEs. The proposed models use per-
mutation invariant encoder and fully connected layers as
decoders. Different loss functions are defined in our mod-
els, including Chamfer Distance and Earth Movers Dis-
tance. To balance the reconstruction loss and KL diver-
gence, we used the idea of β-VAE. Then, we generate new
samples in three ways, using standard Gaussians, mixture
of Gaussians, and directly from the output distribution from
encoder. By the result of experiments, we can successfully
generate reasonable point cloud instance.

1. Introduction
3D representation of objects in real-life is widely used

in computer graphics, and there are many kinds of tradi-
tional 3D geometric data, such as view-based projections.
Recently, many researchers start working with point cloud
data, which represent an object as a set of data points in
some coordinate system. Some of them used to transform
the point cloud data into 3D voxel grid data or bunch of
images, such as VoxNet proposed by Maturana et al. in [9].
And others tried to build deep learning models on point
cloud data directly for both classification and segmentation,
as in [10][11][12]. In this paper, we propose to build a
Variational Auto-Encoder model directly using the point
cloud data to generate point cloud representation of objects.

In Achlioptas et al.’s paper[2], they have shown that it is
reasonable to generate point cloud from low-dimensional
latent space. In our project, we want to use VAE to do the
generation. The reason is that ideally VAE can directly
learn the distribution of latent variable and compared with

GAN, VAEs are usually easier to train.

There are three main challenges of building the genera-
tive model for point could data: the first one is that we need
to make the model permutation invariant,the second is to
find an appropriate loss to measure how similar the gener-
ated point cloud and the target point cloud are, and the last
one is to balance the reconstruction loss and KL divergence.

Our main contributions are:

• we are the first to apply a simple VAE on point cloud
generation task,

• we use the idea from β-VAE to balance the reconstruc-
tion loss and KL divergence,

• instead of sampling from the standard normal distribu-
tion, we tried to sample from a mixture of Gaussian.

We will show some related work in this area in Section
2, the architecture and key insights of our model is shown
in Section 4. In Section ??, we will discuss our experiments
and results, and Section 7 shows our conclusion.

2. Related Work
Recently, there are many works related to 3D shape

data. We will focus on those most recent works related to
point cloud generation and object recognition.

AtlasNet, which is composed of a union of learnable
parametrizations transform a set of 2D squares to the
surface [5], is used for learning to generate the surface
of 3D shapes. The auto-encoder part in AtlasNet is an
encoder based on PointNet [10], where the decoder is
4 fully-connected layers of different sizes with ReLU

1

non-linearities on the first three layers and tanh on the final
output layer.

Based on the Neural Network model for point cloud
classification and segmentation PointNet [10], Yaoqing Y.
et al. [13] proposed a graph-based enhancement on top of
PointNet to promote local structures, where the encoder
is a concatenation of multi-layer perceptrons (MLP) and
graph-based maxpooling layers. And a novel folding-based
decoder is used to deform a canonical 2D grid onto the
underlying 3D object surface of a point cloud, which
consist of two consecutive 3-layer perceptrons. In practice,
in terms of classification accuracy and reconstruction loss,
the decoder has better performance in extracting features
than the fully connected decoder proposed in [1].

PointNetVLAD is a combination/modification of the
existing PointNet [10] and NetVLAD [4], which allows
end-to-end training and inference to extract the global de-
scriptor from a given 3D point cloud [3]. The permutation
invariant feature of PointNetVLAD ensures the model to
output the same global descriptor for a given point cloud
regardless of the order in which the points are arranged. It
is necessary since the points in point clouds are unordered,
which has been shown effective in several supervised and
semi-supervised learning [12]. To be specific, the network
takes the first part of PointNet, cropped just before the
maxpool aggregation layer, feed the output local feature
descriptors from PointNet to the NetVLAD layer and
finally a fully connected layer to have a compact output
feature vector.

However, instead of using permutation equivalent layer,
recent study [6] shows a different design - Pointwise
Convolutional Neural Network. By inputting points that are
sorted in a specific order to the network, the model can still
achieve competitive performance in the object recognition
task, where the order of the points only affects the final
global feature vector used to predict the object category.

For loss functions, Lequan Y. et al. introduces a
data-driven point cloud upsampling technique and point
out that EMD loss can better capture the object shape than
CD [14]. Haque I. et al. proposed that learning features
by optimizing a triplet loss on the mean vectors of VAE in
conjunction with standard evidence lower bound (ELBO)
of VAE allows us to capture more fine-grained information
in the latent embedding[8].

As for the point cloud generation, in the paper[2],
Achlioptas et al. proposed a new model which is a com-
bination of auto-encoder and GAN. And they have shown
that it can generate reasonable point clouds. But they need

to first train an auto-encoder, and then train the generator
and discriminator at the same time, which takes too much
time. So we would like to use a simple VAE model to gen-
erate point cloud objects in relatively less time.

3. Background on Variational autoencoders

Variational autoencoders (VAEs) were defined in 2013
by Kingma et al. and Rezende et al. A variational autoen-
coder consists of an encoder, a decoder, and a loss function.
The encoder is a neural network. Its input is a datapoint
x and it outputs parameters to the probability distribution
qθ(z|x) of the latent variable z, where θ is the weights and
biases. Note that lower-dimensional space is stochastic: we
then sample z from qθ(z|x).
The decoder is another neural network. Its input is the rep-
resentation z, and it outputs parameters to the probability
distribution pφ(x|z) of the data, where φ is the weights and
biases. Then we can generate new sample x∗ from pφ(x|z).
The loss function of the variational autoencoder is the neg-
ative log-likelihood with a regularizer. Assume we have N
data points x1, . . . , xN , the loss function li is defined to be:

li(θ, φ) = −Ez∼qθ(z|xi)[log(pφ(x|z))]+DKL(qθ(z|xi)|p(z))
(1)

4. Model

We are using VAE to do the generation. The full struc-
ture of our model is shown in figure1. The details for our
model will be described in the following subsections.

4.1. Permutation Invariant Encoder

We will first introduce the encoders we used in our
model. The key idea is that the encoder should be invari-
ant to input order, which means, no matter how we permute
the order of points, the output of encoder should remain
the same.Our basic idea comes from Pointnet, which is pro-
posed by Charles R. et al in [10]. The structure is shown
in Figure 1, and the main idea in this model is to approxi-
mate a general function defined on a point set by applying a
symmetric function on transformed elements in the set:

f(x1, . . . , xn) = g(h(x1), . . . , h(xn))

where f : R3 × · · · × R3 → RK , h : R3 → RM and
g : RM × · · · × RM → RK is a symmetric function. In
practice, we used 1D convolutional network with filter size
1 as function h, which is equivalant to a ’fully connected
layer in 2D’. As for the symmetric function g, we chose
maxpool. Then we use two fully connected layers fc1 and
fc2 to get the mean and variance for the latent Gaussian
distribution.

2

Figure 1. Structure of VAE

Figure 2. Structure of Permutation Invariant Encoder

4.2. Sampling

Let µz(x) and Σz(x) denote the output from the en-
coder with input x, then we sample z∗ from q(z|x) =
N (µz(x),Σz(x)) and pass it to the decoder.

4.3. Decoder

For the decoder, it takes the sampled latent variable z∗

as input and the output x∗ is a n × 3 point cloud matrix.
Since the loss we use is permutation invariant distance, we
don’t need to consider the order. In our experiment, we use
two fully connected layers with ReLU as activation func-
tion. We didn’t make the network to be very deep, because
many recent papers have observed that VAEs trained with
powerful decoders will ignore the latent variables (Chen et
al., 2017; Tomczak & Welling, 2017).

4.4. Loss function

4.4.1 Chamfer distance

The (extended) Chamfer distance between two sets S1, S2

of point clouds is defined to be:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22

(2)
For each point, the algorithm of Chamfer distance finds the
nearest neighbor in the other set and sums the squared dis-
tances up. The advantage of this distance is that it can be
easily computed. And since the search for each point is in-
dependent, we can calculate it parallel. The disadvantage
is that it can not fully capture the difference between two
point clouds, since it doesn’t take orientation into account.
For example, letA be a point cloud of an airplane, and letA′

be a copy of A after rotation. Ideally, we want the distance
between A and A′ to be zero, but the Chamfer distance can
be very large.

3

4.4.2 Earth Movers distance

Consider two sets S1, S2 of point clouds with equal size, the
Earth Movers distance between S1 and S2 is defined to be:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x− φ(x)||2 (3)

where φ is a bijection between S1 and S2.
Assume S1 = {x1, . . . , xn} and S2 = {y1, . . . , yn}, the
EMD distance can be viewed as solving a weighted bipartite
matching problem, i.e.

minimize
n∑

i,j=1

Wi,jXi,j

subject to
n∑
i=1

Xi,j = 1, j = 1, ..., n

n∑
j=1

Xi,j = 1, i = 1, ..., n

0 ≤ Xi,j ≤ 1,i, j = 1, ..., n

where Wi,j = ||xi − yj ||2, ∀i, j. And by integrality, we
know that extreme optimal solution X has entries Xi,j ∈
{0, 1}. Then we can use many developed algorithms for
weighted bipartite matching problem to calculate the Earth
Movers distance.
Compared with Chamfer distance, the Earth Mover’s dis-
tance can describing the difference between two point
clouds more accurately, but it also needs more running time.

4.4.3 β-VAE

For the traditional VAE, the objective(loss) function is de-
fined to be:

L(x) = −Ez∈qθ(z|x)[log(p(x|z))] +DKL(q(z|x)|p(z))
(4)

where the first term, i.e. the negative log likelihood
is also known as the reconstruction loss between x and
x∗. And the second term, i.e. the KL divergence between
q(z|x) and p(z) can be viewed as a regularization term.

In the paper [7], they have shown that if we set a spec-
ified constraint ε on the regularization term, then the task
can be viewed as an optimization problem:

minimize d(x,x∗)
subject to DKL(q(z|x)|p(z)) ≤ ε

Rewrite this in the Lagrangian form, we will have:

L(x) = d(x,x∗) + β ∗ (DKL(q(z|x)|p(z))− ε) (5)

Here the Lagrangian coefficient β controls the degree of
applied learning pressure during training, and different β
can generates different representations.

5. Generation

After training, we now have a encoder E and a decoder
D. Then we use two different methods to generate new
samples.

5.1. Sample from the output distribution of Encoder

Every time we randomly select xi from data set
{x1, . . . , xn}. Next, pass it to the encoder and get the la-
tent distribution q(z|xi). Then, we sample z∗ from q(z|xi)
and pass it to the decoder. And the decoder will give us the
generated data x∗.

5.2. Sample from standard Gaussian

Every time we sample z∗ from N (0, I). And then pass
it to the decoder, and get the generated new sample x∗ =
D(z∗).

5.3. Sample from mixture of Gaussian

Assume we have n data, x1, . . . , xn. After encod-
ing, we will have n different Gaussian distributions,
N (µ1,Σ1), . . . ,N (µn,Σn). Next, we random pick m
Gaussian distribution among them, and sample α =
(α1, . . . , αm) ∈ ∆m, where ∆m is the probability simplex
and sample zi ∈ N (µi,Σi), ∀i = 1, . . . ,m. Then we get
a new latent variable z as a convex combination of all these
zi’s, namely z∗ =

m∑
i=1

αizi, and get the generated new sam-

ple x∗ = D(z∗).

6. Experiments

6.1. Dataset

We used two datasets for the experiment, both of them
are sampled from ShapeNet, and we name them 10000-
Point dataset and 2500-Point dataset.
Up to the current stage, we only used airplanes for the ex-
periment. The 10000-Point dataset has only 625 instances
of airplane, but it has 10000 points for each instance. While
the 2500-Point dataset has around 2800 instances of ari-
planes, but only 2500 points for each instance. By observa-
tion, the 2500-Point dataset is more variant than the 10000-
Point dataset. And we showed some instances from the two
dataset in Figure 3 and Figure 4. Besides, the 2500-Point
dataset takes much less time to train.
To save time, we only trained the final models on 2500-
Point dataset, so the results shown below are all from that
dataset.

6.2. Auto-Encoder

Before we start training the variational auto-encoder
model, we trained an auto-encoder to check if the model can

4

Figure 3. Some instance from 10000-Point dataset

Figure 4. Some instance from 2500-Point dataset

be reconstructed using the current structure and loss func-
tion. The only difference here is that we remove the sam-
pling step in our model. For the reconstruction loss, we tried
both Chamfer distance and Earth Mover’s Distance. Some
examples are shown in Figure 5, both of them are trained
for 100 epochs and with learning rate 1e − 5. Although
CD distance takes less time to compute, it seems like the
auto-encoder with the CD distance is harder to converge.
So if we train the model for more epochs, it may give us a
more accurate reconstruction. But at the current stage, it is
obvious that auto-encoder with EMD distance has a better
performance than the suto-encoder with CD distance.

Figure 5. Results of Auto-encoder: the first column is ground truth,
the second column is auto-encoder with EMD distance, and the
third column is auto-encoder with CD distance, both of the models
are trained 100 epochs.

6.3. Comparison of different sampling method

For the following experiments on sampling, we used the
β-VAE model with EMD loss, β = 10000 and ε = 3, and
trained for 500 epochs with learning rate 1e− 5

Sample z from the output distribution of Encoder
We directly sampled latent vairable z from the output
distribution of Encoder, which is also equivalent to sample
from the mixture of Gaussian with sample number 1.

5

Sample z from standard Gaussian distribution
We directly sampled latent variable z from the standard
normal distribution.

Sample z from the mixture of Gaussian
We random pick N point cloud data, and sampled latent
variable z based on the method introduced in Section 5.2.
Some examples are shown in Figure 6.

Figure 6. Results of different sampling methods: the first column
is sampling from standard Gaussian distribution, the second col-
umn is sampling from the output distribution of Encoder, and the
third column is sampling from the mixture of Gaussian, both of
the models are trained 100 epochs.

As we can see from the graph, the samples generated by
sampling z from output distribution of Encoder and mixture
of Gaussian have better quality than the ones generated by
sampling z from standard Gaussian distribution. This is
reasonable, because compared with other two distributions,
the standard Gaussian distribution has large variance.

However, all the generated samples are very similar in
shape. We think it is probably because the decoder is so
powerful that it has already stored critical information for
generating the points cloud, which means no matter what
inputs we put in, it will always us points clouds with similar
shape. And how to improve this is one of our future work.

6.4. Comparison of different β and ε

In this experiment, we want to compare the generated
results with different β and ε. In Figure 7, we show results

with different ε and in Figure 8, we show results with dif-
ferent β.

Figure 7. Results of different ε : the first column is ε = 0, the
second column is ε = 1, and the third column is ε = 3, all of
the models are trained 500 epochs with β = 10000, and sampled
from standard Gaussian distribution.

As we can see from the graph, with ε getting smaller, the
quality of generated samples are getting better. It is reason-
able because when β →, the -VAE is the same as a strictly
constrained optimization problem. And since here we sam-
ple z from standard Gaussian distribution, the closer we set
ε to 0, the better results we will get. However, it also has the
problem that all the generated samples are quite similar.

6

Figure 8. Results of different β : the first column is β = 1, the
second column is β = 100, and the third column is β = 10000,
all of the models are trained 500 epochs with ε = 0, and sampled
from standard normal distribution.

As we can see from the graph, with β getting bigger, the
quality of generated samples are getting better. It is reason-
able because the β actually accounts for the hardness of the
constraints. Therefore, when we set it to be big enough, we
are actually forcing the output of the encoder to be standard
Gaussian, regardless of the input. And this explains why
bigger β gives better results.

7. Conclusion

Based on the results of experiment, we can conclude that
VAE does work for the point cloud generation task, but if
we want to get better generation sampling from the standard
normal distribution, we need to fine tune the hyperparame-
ters to well balance the reconstruction loss and KL diver-
gence. Furthermore, based on the result of experiments, the
CD distance takes less time to compute but more epochs to
converge, so we may try to train the models with CD dis-
tance for more epochs. And also, the generated samples
are very similar, which is another problem we need to solve
in the future, we may try to use the structure of AE-VAE,
which is to generate samples in a latent space.

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Learning Representations and Generative Models for 3D
Point Clouds. ArXiv e-prints, July 2017.

[2] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. J. Guibas.
Representation learning and adversarial generation of 3d
point clouds. CoRR, abs/1707.02392, 2017.

[3] M. Angelina Uy and G. H. Lee. PointNetVLAD: Deep Point
Cloud Based Retrieval for Large-Scale Place Recognition.
ArXiv e-prints, Apr. 2018.

[4] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic.
NetVLAD: CNN architecture for weakly supervised place
recognition. ArXiv e-prints, Nov. 2015.

[5] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry.
AtlasNet: A Papier-Mâché Approach to Learning 3D Sur-
face Generation. June 2018.

[6] B.-S. Hua, M.-K. Tran, and S.-K. Yeung. Pointwise Convo-
lutional Neural Networks. ArXiv e-prints, Dec. 2017.

[7] H. Irina, M. Loic, P. Arka, B. Christopher, G. Xavier,
B. Matthew, M. Shakir, and L. Alexander. Beta-VAE:
LEARNING BASIC VISUAL CONCEPTS WITH A CON-
STRAINED VARIATIONAL FRAMEWORK.

[8] H. Ishfaq, A. Hoogi, and D. Rubin. TVAE: Triplet-Based
Variational Autoencoder using Metric Learning. ArXiv e-
prints, Feb. 2018.

[9] D. Maturana and S. Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. pages 922–
928, 09 2015.

[10] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
CoRR, abs/1612.00593, 2016.

[11] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
CoRR, abs/1706.02413, 2017.

[12] S. Ravanbakhsh, J. Schneider, and B. Poczos. Deep Learning
with Sets and Point Clouds. ArXiv e-prints, Nov. 2016.

[13] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Inter-
pretable unsupervised learning on 3d point clouds. CoRR,
abs/1712.07262, 2017.

[14] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. PU-
Net: Point Cloud Upsampling Network. ArXiv e-prints, Jan.
2018.

7

