
Music Playlist Recommender System

Zhenan Fan
University of British Columbia

zhenanf@cs.ubc.ca

Wen Xiao
University of British Columbia

xiaowen3@cs.ubc.ca

ABSTRACT
With the development of information technology and Inter-
net resources, many useful information is covered by a lot of
irrelevant information. Users often spend time and energy
without finding anything. In view of the phenomenon of
overflowing information, personalized recommendation tech-
nology emerges as the times require. Music recommendation
system provides the users with the songs that may be in
line with their interests based on the content characteristics
of music and the behavior of the users. Most recent pa-
pers only analyze user’s preference over songs, but music is
usually in context of sequence. In this work, we present a
music playlist recommendation system, which not only con-
sider the user’s preference over songs but also their prefer-
ence over song transitions. The main idea is to use Markov
Decision Process to model the recommendation procedure,
and use convolutional neural network to capture the features
in song transitions. What’s more, we use reinforcement-
learning framework to solve this optimization problem and
use Monte Carlo Tree Search to reduce the exploration time.

1. INTRODUCTION
In recent years, with the development of information tech-

nology and Internet, the music industry has shifted more to
online music store and streaming services, such as Itunes,
Spotify and Google Play. As a result, users have much more
choices than before, then music recommender system be-
comes necessary, since it helps users discovering music that
match their taste, and meanwhile, it helps the streaming
services to target the right audience. For example, only few
years ago, all the recommended music were from friends or
radio, and if we would like to listen to it, we have to find the
corresponding CD in store. But things get easy now, we can
just search for the music on the platform or online store, we
even do not need the recommendations from friends, since
we have a new friend who knows us better, and his name is
”music recommendation system”.

In general, when most of us listen to music, we usually

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2019 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

don’t listen to a single piece of music, instead, we would
like to listen to music in sequence. Therefore, it would be
better if your new friend can directly recommend music in
sequence, which we call playlist. Recommending playlist is
not just recommend songs one by one individually, since the
order always matters, to be more specific, we may like song
A, song B and song C independently, but after we listen to
song A, we would prefer to listen to song D instead.

Therefore, the problem we are solving is to recommend
personalized playlists based on the play history of users. The
task is not trivial, since there is a large semantic gap in
music, and the preferred order may depend on various factor,
like personality, personal experience, emotion and etc. In
this paper, we introduce a novel way to predict a playlist for
a given user based on his play history. Our contributions are
as follows. First, we formulate the playlist recommendation
problem as a Markov Decision Process with trivial transition
function. Second, we formulate the user’s reward function
over playlist as a summation of his preference over songs
and his preference over song transitions. Third, we train a
convolutional neural network to capture the features of song
transitions. Finally, we use a a reinforcement-learning based
approach to solve this problem and use Monte Carlo Tree
Search make the learning process more efficiently. We test
our algorithm in the experiment section. And the result
shows that our algorithm does take users preference over
transitions into account.

The reminder of this paper is organized as follows. In Sec-
tion 2, we introduce some related work about music playlist
recommendation. In Section 3, we introduce the data set we
use in this project. In Section 4, we discuss how we formu-
late this problem as a markov decision process and how we
model the reward function. We also introduce the convo-
lutional neural network framework we use in this problem.
In Section 5, we present the reinforcement-learning based
approach we use to solve the problem. In Section 6, we
show our experiment results. In Section 7, we discusee the
conclusion and future work.

2. RELATED WORK
Recommender system has been a popular topic in the field

of Artificial Intelligence over the past decades, it is usually
classified into the following categories: content-based, col-
laborative filtering and hybrid[2]. It is widely applied in
many fields, like movies[4], traveling[9] and news[1].

For the music recommendation, the collaborative filtering
methods generally outperform content-based methods, due
to the semantic gap of music[12]. But Oord et al. proposed

a novel content-based method for music recommendation,
which solves the cold start problem. They use Convolutional
Neural Network to predict the latent factor vectors for songs
only based on the music audio, it provides a possible deep
learning way to recommend music[14].

As Baccigalupo et al. stated, playlist is not merely a
bunch of songs, but a selected collection of songs, arranged
in a meaningful sequence[5]. Thus it is important to find
the inner relationship between consecutive songs, Hsu et
al.proposed a Convolutional Neural Network based way to
predict playlists, which is mainly used in NLP[7]. They are
the first to apply CNN to next-song recommendation, and
showed it outperform the non-NN based ones. They inspire
us that CNN is an appropriate way to invesgate the implicit
relationship of songs.

Besides the novel CNN method, the traditional way to
predict playlists is Markov Decision Process[11][8][10]. Hu et
al. used the users’ feedback information to design the reward
of each song, so it is kind of collaborative filtering way[8].
To be more efficient, they make song clusters, instead of
choosing a song and compute the reward of the specific song,
they choose a cluster of song and compute the reward of the
cluster. After deciding the next cluster, they will choose a
song in that cluster based on user’s preference. It will save
much more time since the action space shrink a lot.

Liebman et al. [11] introduced a different representation
of songs, they use the audio features to represent a song, and
the reward of a song is decided by both user’s preference of
the song and user’s preference of the transition. The transi-
tion reward is represented as the weighted sum of utilities of
current song and every previous songs. As for the learning
process, both Liebman and Hu uses reinforcement learning,
and in Liebman’s latest paper, they improved the model by
applying Monte Carlo Tree Search[10].

3. DATA
We currently use the Yes playlist dataset provided by

Cornell University, the data mainly collected from Yes.com
and Lastfm.com. There are over 3000 songs and 1.3 million
playlists in total with the most popular 250 tags. To make
the data more applicable, we make some pre-processing on
the data.

First, we discard the songs with number of tags less than 3,
and delete them from the playlists. Generally, the playlist
should not be too short or too long, so we only keep the
playlists with length in the range of [20, 30]. After that,
there remains 2367 songs and 595 playlists. Besides, the
number of tags for each song varis from 3 to 81.

4. MODEL

4.1 Markov Decision Process
We want to model the music playlist recommendation

problem as a Markov Decision Process (MDP). A MDP is a
tuple M = (S,A, P,R, T), where

1. S is the set of states

2. A is the set of actions

3. P : S×A×S → R is the transition probability function

4. R : S ×A→ R is the reward function

Figure 1: Markov Decision Process

5. T is the terminal set, namely when the agent enters
the terminal set, the process stops.

The dynamic process of MDP are as follows: an agent in
the initial state s0, and then select an action a0 from the
A. After the implementation, agent transfers to the next
state s1 according to the probability P (s0, a0, s1). Then
an action a1 is executed, and the agent transfer to s2. This
process ends when entering the terminal set. We can use the
following diagram to show the process of state transition.

In our problem, letM be the whole song space. Then we
can define the following MDP:

1. State space S is the set of all playlists with length
smaller than l, namely

S = {(a1, . . . , ai) : 1 ≤ i ≤ l; ∀j ≤ i, aj ∈M}

2. The set of actions A is the selection of the next song
toplay, namely A =M

3. S and A induce a deterministic transition function P .
Specifically,

P ((a1, . . . , ai), a) = (a1, . . . , ai, a)

4. Ru(s, a) is the utility the current listener u derives
from hearing song a when in state s.

5. T = {(a1 . . . , al)}: the set of playlists of length l.

4.2 Song Representation
In our data set, for each song, we have its tag list. Since

we have 250 tags in total, we just represent each song as a
vector with length of 250, each entry is an indicator showing
whether the song has the corresponding tag.

From now, for each song a ∈M, we use θ(a) to denote its
binary tag representation.

Indices Tags

1 rock
3 pop
18 classic
19 guitar
25 dance
34 country
43 sexy
46 metal
89 hip hop
92 blues
98 electronic
223 discoo

Table 1: Some sample tags

4.3 Transition Representation
To model the transition process in playlist, we want to use

the convolutional neural network, since the convolutional

neural network is widely used to investigate the inner rela-
tionship between pixels(CV) or words(NLP). And it is also
recently applied on the playlist recommendation task [7].
Instead of using trained CNN directly, we only use the re-
sult of convolutional layer. And we don’t only consider the
previous song, but the previous i songs.

4.3.1 Dimension Reduction
Before putting data into the convolutional neural network,

we first do the dimension reduction. Assume we have a song
sequence a1, . . . , ai, then we can get their corresponding bi-
nary representation θ(a1), . . . , θ(ai).

First, we calculate the similarity between these binary
song vectors θ(a1), . . . , θ(ai), we use Cosine Similarity to
define the pairwise similarity:

Simam,an =
θ(am) · θ(an)

|θ(am)||θ(an)|

This makes sense because cosine similarity is the cosine value
of the angle between two vectors. Compared with Euclidean
distance, the cosine similarity pays more attention to the
difference between the two vectors in the direction. And
since in our case, θ(a)’s are binary vectors, cosince similarity
should be more relevant.

Next, we define the pairwise distance by

δam,an =
2 · cos−1(Simam,an)

π

Finally, we use Multidimensional Scalling (MDS) to do
the dimension reduction[6]. What MDS do is it takes the
distance matrix as input:

∆ =

δa1,a1 . . . δa1,ai
...

. . .
...

δai,a1 . . . δai,ai

Then it can find smallestN , such that we can find x1, . . . , xi ∈
RN with |xn−xm| = δan,am ,∀n,m, and these points x1, . . . , xi
is the output.

When talking about dimension reduction, people natually
think about PCA. Although both PCA and MDS can do the
dimension reduction, they are different in: PCA minimizes
dimensions, preserving covariance of data while MDS mini-
mizes dimensions, preserving distance between data points.
In our case, since we more care about the pairwise relation-
ship between songs, it’s more reasonable to use MDS instead
of PCA.

We provide the 3d plot of the result from MDS in figure
2.

4.3.2 Convolutional Neural Network
The structure of CNN is shown in Figure 3. First, we

use a convolutional layer to capture the inner relationship
between adjancent songs. To formalize, after the demension
reduction, we will have a i×N matrix X, where

X =

x
T
1

...
xTi

Then we set the size of convolution kernel to be 2 × N ,
namely the kernel will analyze the inner relationship two by
two. After the convolution, we will have a vector with length

Figure 2: Multidimensional Scalling 3D plot

i − 1. Since convolution kernel is used to capture features,
we can use multiple convolution kernels to capture different
features.Therefore, if we use T convolutional kernels in prac-
tice, after the convolution, we will have a vector with length
(i− 1)T .

Secondly, we use K-nearest neighborhood to divide songs
into K clusters, which we will use as the label of CNN.
Specifically, the output layer is equipped with the softmax
activation function and the output is a distribution vector of
length K, where each entry corresponds to the probability
that the next song to be played belongs to that cluster.

To train the CNN, first we extracted the data from our
current dataset. For every playlist, we use every i+1 consec-
utive songs, in which we use the first i songs to represent the
transition, and the cluster of the last song to be the label.

After the training, we will have T trained convolutional
kernels K1, . . . ,KT , and we use these kernels to to estabilish
the transition representation:

(a1, . . . , ai) =⇒Song representation (θ(a1), . . . , θ(ai))

=⇒MDS (x1, . . . , xi)

=⇒K1,...,KT θ(a1, . . . , ai)

From now, for each state (a1, . . . , ai) ∈ S, we use θ(a1, . . . , ai)
to denote its transition representation.

4.4 Reward function
The reward funcion Ru((a1, . . . , ai), a) is the utility user u

obtains by listening song a after a song sequence a1, . . . , ai
been listened already. We think the utility mainly comes
from two parts:

• How much does user u like this song a. And we this
this quantity can be expressed as a weighted sum of
the song tags. Namely, if we use Ru1 (a) to denote this
term, then we have

Ru1 (a) = ωu1 · θ(a)

where each entry of ωu1 denotes how much user u likes
this tag.

• How much the song history a1, . . . , ai can affect. Recall
that we use convolution kernels to calculate the inner

Figure 3: Structure of CNN

relationship inside the song sequences. So if we use
Ru2 (a1, . . . , ai, a) to denote this term, we can write it
as:

Ru2 (a1, . . . , ai, a) = ωu2 · θ(a1, . . . , ai, a)

where each entry of ωu2 denotes how much user u likes
this transition.

To sum up, the reward function Ru((a1, . . . , ai), a) can be
written as:

Ru((a1, . . . , ai), a) = Ru1 (a) +Ru2 (a1, . . . , ai, a)

= ωu1 · θ(a) + ωu2 · θ(a1, . . . , ai, a)

And now our goal is to learn the user specified weights ωu1
and ωu2 .

5. REINFORCEMENT LEARNING
The full learning and recommending procedure is shown

in algorithm 1. For user u, we first get his listening history
a1, . . . , am, and we will recommend him with a playlist of
length k, am+1,...,am+k . Instead of selecting songs from the
whole song space, we first use the similarity between playlists
to find the most similar 5 or 10 playlist, and only consider the
songs in the certain playlists, we define the set of songs to be
candidate set M , this is kind of application of collaborative
filtering. This step will save much more space and time.

First, we do the initialization of ωu1 and ωu2 based on
a1, . . . , am. The detail is provided in section 5.1. Then we
iteratively select song am+1,...,am+k in the candidate set M
by Monte Carlo Tree Search, which we will discuss in section
5.2. And each time we select a new song, we will update the
weight correspondingly (section 5.3).

Algorithm 1 Full Structure

1: Input: a1, ..., am - the first m songs in the playlist
2: K - the number of songs to be predicted
3: M - candidate set of songs
4: CNN - the pre-trained CNN
5: Initialize ω1 and ω2

6: for j = 1 : K do
7: Select song am+j from M
8: Obtain reward rj
9: Update ω1 and ω2

5.1 Initialization
The procedure of initialization is shown in algorithm 2.

• First, we set all the entries of ω1 and ω2 to be equal
weight.

• Secondly, we update ω1 by iteratively adding θ(a1), . . . , θ(am).
This procedure actually updates user’s preference over
song tags based on his listening history. And we nor-
malize ω1 at the end.

• Finally, we update ω2. We set a window of size i, and
we iteratively adding θ(aj , . . . , aj+i) to ω2. This pro-
cedure actually updates user’s preference over transi-
tions based on his listening history. And we normalize
ω2 at the end.

Algorithm 2 Initialization

1: Input: a1, ..., am - the first m songs in the playlist
2: set all entries in ω1 to be 1

len(ω1)

3: set all entries in ω2 to be 1
len(ω2)

4: for k = 1:m do
5: ω1 = ω1 + θ(ak)

6: ω1 =
ω1

sum(ω1)
7: for j = 1 : (m− i) do
8: ω2 = ω2 + θ(aj , . . . , aj+i)

9: ω1 =
ω1

sum(ω1)

5.2 Song Selection
Now we want to select next song to play. Although we can

simply select the song a giving the highest reward R(s, a),
the immediate return function, R(s, a), cannot tell whether
the strategy is good or bad in a long term. Therefore, we
need to consider the long-term utility:

Vπ(s) =

h∑
i=1

γiri

where ri = R(si, π(si)), si+1 = P (si, π(si)), s1 = s
And we select next song a by

π∗ = arg max
π

Vπ(s), a = π∗(s)

Since song space is very big, it’s impossible to exhausts
all the possibilities. Therefore, we need to use some other
method to find π∗. Traditionally, people will use Monte
Carlo method to sample many song sequences, and then
pick one giving highest reward. However, if random moves
are selected for each round, it’s hard to find the best way
to move forward. Therefore, we decide to use Monte Carlo
Tree Search to do the song selection[3].

Monte Carlo Tree Search is a method of making optimal
decision in the problem of artificial intelligence, usually in
the form of action (move) planning in a combined game.
It combines the generality of random simulation and the
accuracy of tree search.

The sturcture of the Monte Carlo Tree Search is shown in
the figure 4:

Monte Carlo Tree Search consists of four main steps: Ex-
pansion, Simulation, Back Propogation and Exploitation.

1. Expansion

If current node is not a terminal node, namely the
playlist length is not maximal, then we randomly select
a new song and set to be the child of the current node.

2. Simulation

Start simulating a song sequence from the current node
until it reaches maximal length.

3. Back Propogation

Every node ni is associated with a touple (Ti, vi), where
Ti is the numer of visit through ni, namely the number
of times ni is selected, and vi is the average value of
all the simulation results of a subtree with node ni as
the root node. More specifically,

Ti =
∑

n∈Children(ni)

Tn

vi =

∑
n∈Children(ni)

vnTn

Ti

where Children(ni) is the set of all the children of
ni. That is, the number of access times of the parent
node, Ti, is the sum of the number of access for all
the children, and the observed return value vi is the
weighted avarage of all the returns of the child nodes.

Then when the leaf node obtains the new v value and
T value through simulation, we updates the v values
and T values of all the internal nodes on the search
path.

4. Exploitation

Start from current node n, for every child ni we give
it a evaluation value ri, and we select the child with
highest ri, where

ri = vi + c

√
ln(Tn)

Ti

where c is the exploration parameter used to balance
exploration and exploitation. As we can see, vi cor-
responds to exploitation, namely the node with high
possible return are more likely to be selected. And√

ln(Tn)
Ti

corresponds to exploration, it is high for moves

with few simulations.

Algorithm 3 MCTS

1: while running time limitation not reached do
2: node = root
3: while node.Max depth not reached do
4: if node have children then
5: if with probability p then
6: node = expand(node)
7: Break
8: else
9: node = bestchild(node.children)

10: else
11: node = expand(node)
12: Break
13: if node.Max depth not reached then
14: Simulation(node)

15: Back Propogation(node)
return bestchild(root)

5.3 Weights Update
After selecting song am+j , we will update the weights ω1

and ω2 correspondingly. The full procedure is shown in al-
gorithm 3. rj is the reward generated by this song.

• First, we let r̄ be the average of history rewards r1, . . . , rj−1

• Secondly, let rdirection = log(
r

r̄
). Note that rdirection >

0 if rj > r̄ adnd rdirection < 0 if rj < r̄. There-
fore, rdirection determines the direction of the update.
What’s more, the farther the distance between rj and
r̄, the greater the value rdirection. Thus, rdirection also
determines the strength of the update.

• Finally, we update ω1 and ω2 by

ω1 =
j

j + 1
· ω1 +

1

j + 1
· R1

R1 +R2
· rdirection · θ(am+j)

ω2 =
j

j + 1
·ω2+

1

j + 1
· R2

R1 +R2
·rdirection·θ(am+j−i, ..., am+j)

Algorithm 4 WeightUpdate

1: Input: θ(am+j), θ(am+j−i, ..., am+j)
2: {r1, ..., rj} rewardList - reward list
3: ω1, ω2 - parameter in reward function
4: Let r̄ = mean({r1, ..., rj−1})
5: rdirection = log(

r

r̄
)

6: ω1 = j
j+1
· ω1 + 1

j+1
· R1
R1+R2

· rdirection · θ(am+j)

7: ω2 = j
j+1
·ω2+ 1

j+1
· R2
R1+R2

·rdirection ·θ(am+j−i, ..., am+j)

6. EXPERIMENT
Instead of selecting songs from the whole song space, we

first use the similarity between playlists to find the most
similar 5 or 10 playlist, and only consider the songs in the
certain playlists, we define the set of songs to be candidate
set, this is kind of application of collaborative filtering. This
step will save much more space and time.

Figure 4: Monte Carlo Tree Search

6.1 CNN
We set the transition length i to be 5, which means for the

song ak, we will consider the previous 4 songs, i.e ak−4, ..., ak
as the input of CNN, and the cluster of ak+1 is the label.
Then we have 11,116 data in total, and then we split the
data into training set, validation set and test set. As for the
kernel, we set 10 kernels in total, thus the result of convolu-
tional layer is a vector of length 40.

Besides, we use the Theano[13] to train the CNN on GPU,
which will make it more efficient.

After training, the accuracy of test set and train set is
around 17% with 100 classes.

6.2 Baseline
We set two baseline algorithm, the first one is just ran-

domly pick songs from the candidate set. The second base-
line is the greedy algorithm, by setting this baseline, we want
to show that the order really matters, the sequence we gen-
erated is better than picking the song with largest reward
individually each time. After selecting the song with largest
reward, the parameter in reward function will be updated
the same as in our CNN-MCTS method.

6.3 Comparison
For the evaluation, we use two methods: one-to-one simi-

larity and max similarity.
The one-to-one similarity is to measure the similarity of pre-
diction and true playlist one by one, i.e

Sim1 =

num pred∑
i

sim(pred[i], playlist[i])

The max similarity is to measure the max similarity of

prediction and all the remaining songs in the playlist, i.e

Sim2 =

num pred∑
i

max
j
sim(pred[i], playlist[j])

The one-to-one similarity mainly measures the transition
preference of the user and the max similarity mainly mea-
sures the song preference of the user.

Table 2: Result comparison with number of predic-
tion equal to 3

Mean one-to-one similarity Mean max similarity
Random 0.63 1.13
Greedy 0.91 1.75

CNN-MCTS 1.28 1.83

The experiment results are shown in Table 2 and Figure
5. On one hand, based on the result, we can see that when
using max similarity, the CNN-MCTS algorithm has similar
results as Greedy. However, when using one-to-one similar-
ity, CNN-MCTS algorithm has obviously better result than
the greedy algorithm. This shows that the greedy algorithm
can capture the user’s preference on songs but not the pref-
erence on transitions. On the other hand, from the graph
we can see that greedy algorithm has smaller variance than
CNN-MCTS algorithm, this shows that our algorithm is not
very stable, and this might be one of our future work.

For a more intuitive explanation, here we give an example:

Figure 5: Comparison Results. Blue: Random; Red: Greedy; Yellow, CNN-MCTS

Table 3: An example: the first 13 songs in a playlist,
and given the first 10 songs, we are predicting the
next 3 songs

Order Song Name Artist
1 Firework Katy Perry
2 Moment 4 Life (w/ Drake) Nicki Minaj
3 Like A G6 Far East Movement
4 Right Above It (w/ Drake) Lil Wayne
5 We R Who We R Ke$ha
6 Aston Martin Music Rick Ross
7 Knock You Down Keri Hilson
8 Whatever You Like T.I.
9 Only Girl (In The World) Rihanna
10 Grenade Bruno Mars
11 I’ll Be Missing You Puff Daddy
12 What’s My Name (w/ Drake) Rihanna
13 Hold Yuh Gyptian

Table 4: Result of Greedy algorithm
Order Song Name Artist
11 Just A Dream Nelly
12 DJ Got Us Fallin’ In Love Usher
13 Down (w/ Lil Wayne) Jay Sean

Table 5: Results of CNN-MCTS algorithm
Order Song Name Artist
11 Bonnie & Clyde (w/ Beyonce) Jay-Z
12 What’s My Name (w/ Drake) Rihanna
13 Love The Way You Lie (w/ Rihanna) Eminem

Now we take a look at the tag list for these songs
True Playlist

1. I’ll Be Missing You: ’ 90s’, ’ rnb’, ’ hip hop’

2. What’s My Name (w/ Drake): ’ 00s’, ’ hip-hop’, ’ love’

3. Hold Yuh: ’ male vocalists’, ’ love songs’, ’ party’

Playlist generated by greedy algorithm

1. Just A Dream: ’ 00s’, ’ hip hop’, ’ catchy’

2. DJ Got Us Fallin’ In Love: ’ hip-hop’, ’ love’, ’ hot’

3. Down (w/ Lil Wayne): ’hot’, ’ dance’, ’pop’

Playlist generated by CNN-MCTS algorithm

1. Bonnie & Clyde (w/ Beyonce): ’ 00s’, ’ rnb’, ’ hip hop’

2. What’s My Name (w/ Drake): ’ 00s’, ’ hip-hop’, ’ love’

3. Love The Way You Lie (w/ Rihanna): ’ male vocal-
ists’, ’love songs’, ’rap’

As we can see, compared with the playlist given by the
greedy algorithm, the one given by the CNN-MCTS algo-
rithm has more similar song transition as the true playlist.

7. CONCLUSION AND FUTURE WORK
In this paper, we present a novel music playlist recommen-

dation system, which not only consider user’s preference over
songs but also their preference over song transitions. In the
experiment, we show that our algorithm can generate better
playlists compared with a more traditional method which
only put user’s preference over songs into consideration.

For future work, we can improve the model in the following
parts:

• The result depend much on the result of CNN, but
the CNN model is not very stable, we would like to
improve the CNN model to make it more stable. It is
a good way to increase the size of dataset.

• In this paper, we use the cosine similarity to measure
the similarity between songs, and we can Jaccard sim-
ilarity to see if it can give better results.

• For the candidate set of MCTS, now we used the songs
in the most similar n playlists, which is a way to apply
the collaborative filtering. And next step we can use
weighted matrix factorization instead.

8. REFERENCES
[1] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and

Sepideh Mahabadi. Real-time recommendation of
diverse related articles. In Proceedings of the 22Nd
International Conference on World Wide Web, WWW
’13, pages 1–12, New York, NY, USA, 2013. ACM.

[2] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: a survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, June 2005.

[3] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2):235–256, May 2002.

[4] Amos Azaria, Avinatan Hassidim, Sarit Kraus, Adi
Eshkol, Ofer Weintraub, and Irit Netanely. Movie
recommender system for profit maximization. In
Proceedings of the 7th ACM Conference on
Recommender Systems, RecSys ’13, pages 121–128,
New York, NY, USA, 2013. ACM.

[5] Claudio Baccigalupo and Enric Plaza. Case-Based
Sequential Ordering of Songs for Playlist
Recommendation, pages 286–300. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

[6] I. Borg and P.J.F. Groenen. Modern Multidimensional
Scaling: Theory and Applications. Springer, 2005.

[7] Kai-Chun Hsu, Szu-Yu Chou, Yi-Hsuan Yang, and
Tai-Shih Chi. Neural network based next-song
recommendation. CoRR, abs/1606.07722, 2016.

[8] Binbin Hu, Chuan Shi, and Jian Liu. Playlist
Recommendation Based on Reinforcement Learning,
pages 172–182. Springer International Publishing,
Cham, 2017.

[9] Asher Levi, Osnat Mokryn, Christophe Diot, and Nina
Taft. Finding a needle in a haystack of reviews: Cold
start context-based hotel recommender system. In
Proceedings of the Sixth ACM Conference on
Recommender Systems, RecSys ’12, pages 115–122,
New York, NY, USA, 2012. ACM.

[10] Elad Liebman, Piyush Khandelwal, Maytal
Saar-Tsechansky, and Peter Stone. Designing better
playlists with monte carlo tree search. In Proceedings
of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco,
California, USA., pages 4715–4720, 2017.

[11] Elad Liebman, Maytal Saar-Tsechansky, and Peter
Stone. Dj-mc: A reinforcement-learning agent for
music playlist recommendation. In Proceedings of the
2015 International Conference on Autonomous Agents

and Multiagent Systems, AAMAS ’15, pages 591–599,
Richland, SC, 2015. International Foundation for
Autonomous Agents and Multiagent Systems.

[12] M. Slaney. Web-scale multimedia analysis: Does
content matter? IEEE MultiMedia, 18(2):12–15, Feb
2011.

[13] Theano Development Team. Theano: A Python
framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May
2016.

[14] Aaron van den Oord, Sander Dieleman, and Benjamin
Schrauwen. Deep content-based music
recommendation. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 2643–2651. Curran Associates, Inc.,
2013.

In its simplest form, the Ising Model consists of a NxN lat-
tice of binary variables xi ∈ {−1,+1} that are locally con-
nected horizontally and vertically with pairwise potentials.
There can also be an external field applied to the variables
that biases them toward a particular state. The total energy
of a simple Ising model we consider here is defined as

E = −J
∑

(i,j)∈E

xixj − Jb
∑
i∈V

bixi

Where the first sum is over all edges of the lattice and the
second over all nodes. J, Jb, bi are the strength of pairwise
interactions, strength of external field, and per-pixel binary
desired values. The corresponding un-normalized probabil-
ity distribution over states of the lattice is:

π(x) = exp{J
∑

(i,j)∈E

xixj + Jb
∑
i∈V

bixi}

