
Huarong Dao Puzzle Solution(Search)

Wen Xiao(g4xiaowe), Zhi Li(g3lizhi), Zhen Ren(c3renzhe)

December 6, 2015



1 Introduction

Klotski (Huarong Dao) is a Chinese traditional sliding block puzzle game. It
aims to move the largest block out of the puzzle, regardless the other smaller
blocks. The game was inspired from a Chinese historical story. A Chinese
famous warlord, Cao Cao was surrounded by four enemy generals and sol-
diers, and he had to think of a way to escape. The game is consisted by
one largest block, which represents Cao Cao, and 4 smaller rectangle blocks
(represents enemy generals) and 4 smallest blocks (represents soldiers). The
number and the size of each blocks are fixed; however, the position can be
various. In addition, there are also two empty positions with the smallest
block size so that all blocks are able to move until the largest block get out
of the puzzle by passing through the hole at the bottom. The detail visual-
ization of Klotski is the following.

The picture above shows an example position of each block. Our program
takes the above state as initial state, and expand to multiple states by mov-
ing only one block each step.

The variability of the position of each block results different versions of this
game. It is apparent that each version has its own unique way to solve it and

1



has its own optimal solution. The picture above describes one of the most
famous versions of this game and we will take this version as an example
to demonstrate our solution towards this problem. (we just take the above
version as an example, but our solution is designed to work on all versions
of this game).

Because of the similarity between this game and the “8-Puzzle” game in-
troduced in lecture, by the suggestion from Professor Fahiem Bacchus, we
decided to choose Breath First Search to solve this problem. We took
the above implementation of each blocks as initial state and generate Breath
First Search to expand into multiple states by moving one block one posi-
tion each time; then the shortest path to goal state should be the optimal
solution of the game. The detail implementation of each functions and class
(including state space, hash code, etc. . . ) will be illustrated in Section.2,
Build Up the Model in this report.

In order to achieve our design in this project, the first problem came up to
us is how do we choose to represent the Klotski game in Python. It is no
doubt that BFS will generate uncountable number of nodes and each node
is a Klotski board with different position of blocks. Besides worrying about
the size of each node, thousands of nodes has already become a huge data
storage problem and it will undoubtedly affect the run time of program. As
the result, the design of our implementation of Klotski game board should be
minimize but also include essential data to ensure the the best running effort.
The graph below shows our first attempt to implement the game board but
we changed soon because its size and instability (all data in list, which is too
easy to be changed). Finally, we choose list of tuples to represent the Klot-
ski board in python program and use a function to print the list to a table
version so people can easily determine which block moves in each step. The
detail of the date structure we use and the implementation of print function
will be demonstrated in the following sections.

Our first version of Klotski game board:

2



2 Build up the Model

2.1 Idea of the Model

As introduced above, the Huarongdao puzzle game is made up of a size 5*4
board, which consists 4 different types of blocks - one of size 2*2 block (rep-
resenting Cao Cao), 4 of size 2*1 rectangle blocks (representing general A,
B, C and D respectively), 1 of size 1*2 rectangle blocks (representing general
E) and 4 of size 1*1 smallest blocks (representing soldier A, B, C and D
respectively). And also contains 2 of size 1*1 empty positions.

The idea of our Huarongdao model is that we consider the 4 different types
of blocks, together with 2 empty positions, as 5 types of the blocks. And the
Huarongdao game board is made up by all those blocks and has coordinates.
The board itself is a state space. The model has the function that will pro-
duce all possible new boards by moving one of the block. And it also has the
function to make the board visualized to users.

More detailed, the 5 different types of blocks are shown below. Each block
has three attributes, the vertical coordinate of its upper left vertex, the hor-
izontal coordinate of its upper left vertex and its name. The information
are stored in a tuple, for instance, (2, 1,”A”) represents a block named ”A”,
whose upper left vertex is at the coordinate (2, 1) on the board.

3



The board of Huarongdao in our model is a size 5*4 rectangle with the origin
coordinate on the upper left corner and covered by all of those blocks.

(add board image)

We used a list of ordered sublists to represent such board. And each sublist
contains the tuple of block(s) which have the same type, and the elements of
those sublists are sorted in a way that first sorting based on their horizontal
coordinate values and then the vertical values. The helper function sort()
are built for simplicity. The reason we sort those blocks is that we consider
two boards with the different positions of the blocks with the same size are
same. Therefore, such two boards will have the same hashable states, which
is useful for path/cycle checking. The following is an example of how we use
list of sublists to represent the sample board from above.

The first element of the list, [(0, 1, “A”)], is always contains the largest
block - the block we want to move out. The second element of the list
contains all the blocks with size 2*1 - type 3 in the above image, which
is [(0,0,”E”),(0,3,”F”),(2,0,”C”),(2,3,”D”)] in this example. The third ele-
ment of the list, [(2,1,”B”)], is the block with size 1*2 - type 2 in the above
image. In this case, [(3,1,”G”),(3,2,”H”),(4,0,”I”),(4,3,”J”)] is the fourth el-
ement of the list contains all the blocks with size 1*1 - type 4 in the above
image. The last element of the list contains two blank blocks - type 5,
say,[(4,1,”X”),(4,2,”X”)].

4



2.2 Implementation of the Model

The file HuaRongDao.py is class that builds the Huarongdao model described
above and provides some methods to solve Huarong Dao puzzle.

1. The class initializer method init : This method initializes a Huarong-
dao object an initial board, each block on the board is assigned by an initial
position and a name, which is a list of sublists of the blocks.

2. the successors method: This method takes a state(”self”) as an input,
and return a list of all its successors. Note that each Huarongdao object rep-
resents a state in the Huarondao state space and its successors are Huarong-
dao objects of which are reachable from current board(”self”) by a single
movement of any block. Also, every Huarongdao object contains the name
of action used to obtain it (a string indicates which direction the block is
moved), the reference to its parent, the cost of getting to this state (zero in
this case), the Huarongdao specific data structure (the board and the blocks
information) and the blocks with the same type are sorted by calling sort().

The logic of the successors() method is to walk through every block on the
board, check whether or not this block is eligible to move in each of the four
directions (up, down, left and right). If the block is eligible to move, then
create a new Huarongdao object which is obtained from a single movement
of that block and store the new object in a list, we called it State in our
project. Note that one particular block may have multiple ways to move, in
such case, it will produce multiple successors from current state by moving
the same block in the different directions. Then repeating this procedure
until checked the eligibility of all blocks and return successors which is the
list State. Note that we do not need to check the blank blocks. Moreover,
to consider a block is eligible to move or not we check is there enough blank
space that allows the block to move one unit distance in that direction. In
our model, firstly, we store the blocks of the current board in the lists such
that each list contains the same type of blocks. Secondly, we looped through
every element of different type. For each element, we checked whether or not
this block is able to move in all four directions. For instance, The Type 1
block are able to make a single movement if and only if the two blank blocks
are both next to one side of the Type 1 block. The possible movements in all
four directions of Type 1 block are similar. The following is the code checking

5



whether the Type 1 block are able to move downwards, which checks if there
is a blank block lies in two unit distances below the upper left position of
Type 1 block and there is another blank block lies next to the previous one
on the right side.

For the Type 3 blocks, there are two kinds of scenarios of a single move-
ment: one blank block lies right below or above the Type 3 block or two
blank blocks both lies next to the right or left side of the Type 3 block. The
following code are two examples of checking these two scenarios. The first
one checked the availability of type 3 moving one unit distance downwards
by checking if the coordinate of any blank block is at right below this block.
And the second one checked if there are two blank blocks lies next to the
right side of the Type3 block in order to make a rightward movement.

For the other two types of blocks, Type 2 and Type 4, the Type 2 blocks
have the similar two scenarios as the Type 3 blocks, we discussed above, but
are in the different directions. And the Type 4 blocks are able to move one
unit distance in any direction if there is a blank block lies next to it.

3. The hashable state method: This method returns the current board
(state) using a tuple of sub-tuples, which can uniquely represent the current
board(state). Since python dictionary is a good way to implement path/cycle
checking in our model, which is critical of saving time and space, we are using
a tuple of tuples as indexes of the dictionary. The way to implement it is
that basically casting the coordinate list(the board infomation list), which
was a list of sublists, to a tuple of subtuples and remove the name of each
block. Remember that the first subtuple contains the Type 1 block, the
second subtuple contains the Typle 3 blocks, Typle 2 block is in the third
sublist, Typle 4 blocks are in the fourth sublist and two blank blocks are in
the last sublist. The following shows an example of the hashable state of the
board showed above.

6



4. The print state method: This method print out the current state in the
user-friend way. We implement it by creating an empty 5:4 board which has
5*4=20 empty positions. We use a list of 20 sublists representing this empty
board, and each sublist representing a position. The sublist with index zero
is linked to the first position from left side in first row, and sublist with
index one is the second postion in the first row and so on. Each sublist has
5 attributes, first four are booleans which shows whether this positon has
border on the top side, right side, bottom side and left side respectively, the
fifth attribute is the name of the relating block. Note some of the blocks
may cover multiple positions. While we walk through every block on the
current board, we check which posotion(s) this block cover and store those
infomation into the corresponding sublist(s). The following shows a sample
result of this method.

5. The get goal method simply return the coordinate of the largest block
on the current board.

3 Algorithm

3.1 Select algorithm: Breath First Search

Up to now, we have learned several searching algorithms, and I will analyze
if these algorithm can be used in this problem.
1.Uniform-Cost Search
It will expand the node with the least cost in the open list. Since the cost of
every move equals one in our model, it is the same as BFS.

7



2.Depth First Search
It will place the new paths at the front of the open list, which means we will
go through one path until no way to go. Then we will change to another
path. It can work well in this problem, that is to say, we can always find
a solution to the puzzle if exists. And as we already knows that the worst
running time of this algorithm is O(bm). Which seems better than BFS. But
its solution is always the ’first’ one approached, not the ’shortest’. We also
implement this algorithm so that we can compare the results.
3.Iterative Deepening Search
It just like the combination of BFS and DFS. Start at L=0, We iteratively
increase the depth limit, and then perform a DLS for each depth limit. It
can always find the optimal solution, and the worst running time of it is less
than BFS if BFS check the status of the node when it is expanded. But we
can make the BFS better, and we can include it in the latter section.
4.A* Search
The idea is to build a heuristic function which guesses the cost to get to
the goal from node n, and calculate the cost from start to n, then get an
evaluation function by adding them up. Every time we need to expand the
open list, we just expand the node with the lowest evaluation function. It
can work very well if we have a perfect evaluation function. But the problem
here is that we can not get a good evaluation function from the puzzle. We
do not know the distance between ’solution’ and the current state.
5.Backtracking Search(CSP)
It provides a good way to solve the problems with constraints(i.e the sudoku
problem we solved in the assignment2). But there is no constraints in this
problem, the blocks can be in any place in the board as long as there is space.
So we can not use this model.
6.Breadth First Search
It place the new paths that extend the current path at the end of the open
list. By which we means just search the solution step by step, after reached
every possible state with the same number of step, we move on to the next
step. Thus it can always find the ’shortest’ solution, which is exactly we
want. As for the running time, which seems worth than IDS, but we can
make it better by checking it when its parent is expanded.

8



3.2 Path/Cycle Checking

Since we can reach the same state by the different steps, path checking and
cycle checking are very important to save time and save space.
Here in this problem, we simply used a dictionary to store all states. Each
time when we expand a state, we just add all its successors into the dictio-
nary, and if it is already in the dictionary, we just ignore it.
And as we mentioned in the previous part, two states with the same position
of the blocks with the same size is considered to be the same.
For example, the following two states are considered to be the same .

(The positions of ’B’ and ’D’ are exchanged.)

3.3 Implement of BFS

We have following variables defined in the algorithm:
1. searched: a dictionary to do the path checking and cycle checking.
2. bfs: the open list to contain the states we need to check.
3. current step: record the current step, since we are doing BFS, we search
the solution step by step, which means we need to check all states with step
i before checking the states with step i+1. Once we finish all the states with
the same step, we will move on, so just add this attribute by 1 to inform
which step are we in.
4. start: the start time of this algorithm, it is used to calculate the whole
running time of searching using this algorithm.

Then I will introduce how this algorithm works.
Start from the initial state, we just loop in the bfs. Every time we reach a
state in bfs, we will first check if its step is the same as the current step, if

9



not, we will add the current step by 1 to indicate we reached the next level
in the searching tree. And then we will get all the successors of the current
state, first check if there is one state satisfied our goal function, if so, just
print out the final step number and the whole process. Then we will let the
step of all the successors equal to one plus the current state to indicate it
is on the next level.Next we will append them to the bfs and add them to
the searched dictionary. If after we search all the bfs and still can’t find a
solution, just print ’no solution’.
One particular thing to notice is that we check the satisfaction of the
state when its parent is reached instead of it is reached, which saves
lots of time and space and dominate the IDS algorithm, that is also a reason
why we choose bfs.

3.4 BFS and DFS

We also implement the DFS algorithm in this problem, here I am going to
compare these two algorithm.

Algorithm Name BFS DFS
Runtime 2.6 1.2

Step 116 3185
Number of States 24029 11948

We can see that BFS can find the optimal solution – the solution with the
shortest step from the initial state. But the running time of DFS is better
than BFS, and the states it reached is much less than BFS.
This is very interesting because as we learned in the class, the worst running
time of BFS and DFS are O(bd+1) and O(bm) where m is the longest path in
the searching tree. And in this puzzle game, m should be much larger than
the best solution(116 steps), so BFS is supposed to be much faster than DFS.
In my opinion, we get this result because the solution in our search tree is
not unique. There are many different solutions with different steps; once we
go along a path, it is not hard to reach one solution if we don’t repeat doing
the same thing(we did the path/cycle checking to avoid repeating). So DFS
here is faster but unfortunately it can not find the optimal solution, so we
can not use it.

10



4 Results and Evaluation

4.1 Results

In accordance with the algorithm analysis and comparison above, we im-
plement Breath First Search in our program to ensure getting an optimal
solution. The program takes 2.6s and 24029 states to find the optimal solu-
tion of our example version of Klotski Game in this report. The following
two pictures shows our print version of initial and final state in our program.

initial state:

final state:

In order to clearly present the detail solving steps of our program, instead
of using the above initial state, we will take an easier Klotskil Game board
as our initial state so that each step (each move of block) can be clearly
demonstrated.

11



12



13



4.2 Evaluation and Improvement

Compared with other results on the internet, our algorithm can always find
the optimal solution, but the speed is a little slower than them. And since we
use a dictionary to store all the visited states, we waste much more spaces.
As for the steps, it will be better if we can think one more step when finding
the successor, which means when a block can move two steps, we can just
add the state after two moves in the successor list of the original one.

14


