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What is Extractive Summarization? | 1

I select sentences that can best represent the whole document
I can be regarded as a sequence labeling problem
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Properties of Good Summary | 2

A good summary should be

I informative
I salient
I non-redundant
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Properties of Good Summary | 2

A good summary should be
I informative
I salient
I non-redundant

Previous neural models focus more on the informativeness, and in this
work, we aim to reduce redundancy while keeping the informativeness
in the generated summary.
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How to measure redundancy in the text? | 3

I Unique N-gram Ratio: measures n-grams uniqueness. [PXS17a]

Uniq_ngram_ratio =
|uniq_n_gram|
|n_gram|

I Normalized Inverse of Diversity (NID): captures redundancy, as the
inverse of a diversity metric with length normalization. Diversity is
defined as the entropy of unigrams in the document [FRBK17].

NID = 1− entropy (D)
log(|D|)

Document is more redundant with low Unique N-gram Ratio and high NID.
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Analyze Redundancy of Documents | 4

I News: CNNDM, Xsum
I Scientific Paper: Pubmed, arXiv

I Scientific paper tend to be much longer than the news articles
I Redundancy is a more serious problem in scientific paper
I The sentences in the scientific paper datasets tend to be longer than in

the news datasets

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Analyze Redundancy of Documents | 4

I News: CNNDM, Xsum
I Scientific Paper: Pubmed, arXiv

I Scientific paper tend to be much longer than the news articles
I Redundancy is a more serious problem in scientific paper
I The sentences in the scientific paper datasets tend to be longer than in

the news datasets

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Analyze Redundancy of Documents | 4

I News: CNNDM, Xsum
I Scientific Paper: Pubmed, arXiv

Findings:
I Scientific paper tend to be much longer than the news articles

I Redundancy is a more serious problem in scientific paper
I The sentences in the scientific paper datasets tend to be longer than in

the news datasets

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Analyze Redundancy of Documents | 4

I News: CNNDM, Xsum
I Scientific Paper: Pubmed, arXiv

Findings:
I Scientific paper tend to be much longer than the news articles
I Redundancy is a more serious problem in scientific paper

I The sentences in the scientific paper datasets tend to be longer than in
the news datasets

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Analyze Redundancy of Documents | 4

I News: CNNDM, Xsum
I Scientific Paper: Pubmed, arXiv

Findings:
I Scientific paper tend to be much longer than the news articles
I Redundancy is a more serious problem in scientific paper
I The sentences in the scientific paper datasets tend to be longer than in

the news datasets

Thus in this paper, we focus only on the scientific paper domain.
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A Common Framework of Neural Summarizers | 5

I Sentence Scoring: measure the importance of each sentence in the
document.

I Sentence Selection: select sentences based on the importance score
(and/or other measurements).
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Categories of Redundancy Reduction Methods | 6

Based on When and How the redundancy is considered, we organize the
redundancy reduction methods into three categories:

A When Design The Architecture, Implicitly
B When Compute Scores For Sentences, Explicitly
C When Select Setences Based On Scores, Explicitly
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The Baseline Models - Naive MMR | 7

I traditional extractive summarization method
I ranks the candidate sentences with a balance between

informativeness and redundancy with a balance factor λ

MMRScore = arg max
si ∈D\Ŝ

[λSim1(si ,Q) #Informativeness

− (1− λ) max
sj ∈Ŝ

Sim2(si , sj )] #Redundancy
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The Baseline Models - ExtSum-LG | 8

To compare different redundancy reduction methods fairly, we adapt all the
methods into the baseline model - ExtSum-LG[XC19], as it
I is the SOTA summarizer on both scientific paper datasets
I is a non auto-regressive model
I doesn’t consider redundancy aspect.

Sentence Scoring:

Sentence Selection: Greedily pick top k sentences
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Overview of Current Methods | 8

Categ. Methods
Sent. Scor.

Sent. Sel.
Encoder Decoder Loss Func.

BSL Naive MMR Cosine Similarity MMR Select
BSL ExtSum-LG Enc. LG MLP Cross Entropy (CE) Greedy



Category A | 9

SR Decoder:
I Auto-regressive SummaRuNNer Decoder [NZZ17], taking

consideration of previous predictions.

NeuSum Decoder:
I Auto-regressive NeuSum Decoder[ZYW+18]
I Learn the relative gain of each sentence
I Loss function: KL Divergence
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Overview of Current Methods | 9

Categ. Methods
Sent. Scor.

Sent. Sel.
Encoder Decoder Loss Func.

BSL Naive MMR Cosine Similarity MMR Select
BSL ExtSum-LG Enc. LG MLP Cross Entropy (CE) Greedy

A + SR Decoder Enc. LG SR Dec. CE Greedy
A + NeuSum Decoder Enc. LG NeuSum Dec. KL Divergence Greedy



Category B - RdLoss | 10

I Add a redundancy loss term Lrd to the original loss function
I Explicitly learn to reduce the score of redundant sentences.

L = βLce + (1− β)Lrd

Lrd =
n∑

i=1

n∑
j=1

P(yi )P(yj )Sim(si , sj )
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Category C - Trigram Blocking | 11

I A simplified version of MMR method [PXS17b]
I Widedly used in recent summarization models (e.g. BERTSUM [LL19])
I In the sentence selection phase, the current candidate is added to the

summary only if it does not have trigram overlap with the previous
selected sentences

I Otherwise, the current candidate sentence is ignored and the next one
is checked
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Category C - MMR-Select | 12

I Inspired by the traditional MMR method
I Balance the informativeness and redundancy in a more soft and

flexible way

MMR-Select = arg max
si ∈D\Ŝ

[MMR-scorei ]

MMR-scorei = λP(yi )− (1− λ) max
sj ∈Ŝ

Sim(si , sj )

λ is a balance factor.
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Category C - MMR-Select+ | 13

I Finetune the neural model based on MMR-Select
I To promote synergy between Sentence Scoring and Sentence

Selection phases
I The Sentence Scoring combines three components:

> The neural model
> The original cross-entropy loss Lce
> An RL mechanism whose loss is Lrd

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Category C - MMR-Select+ | 13

I Finetune the neural model based on MMR-Select
I To promote synergy between Sentence Scoring and Sentence

Selection phases
I The Sentence Scoring combines three components:

> The neural model

> The original cross-entropy loss Lce
> An RL mechanism whose loss is Lrd

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Category C - MMR-Select+ | 13

I Finetune the neural model based on MMR-Select
I To promote synergy between Sentence Scoring and Sentence

Selection phases
I The Sentence Scoring combines three components:

> The neural model
> The original cross-entropy loss Lce

> An RL mechanism whose loss is Lrd

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Category C - MMR-Select+ | 13

I Finetune the neural model based on MMR-Select
I To promote synergy between Sentence Scoring and Sentence

Selection phases
I The Sentence Scoring combines three components:

> The neural model
> The original cross-entropy loss Lce
> An RL mechanism whose loss is Lrd

Wen Xiao and Giuseppe Carenini Redundancy Reduction



Category C - MMR-Select+ | 14

Lrd = −(r (Ŝ)−r (S̄))
n∑

i=1

log P(ŷi )

I Lrd is the inverse expected reward based on the ROUGE score of Ŝ
(generated by MMR-Select) weighted by the probability of the Ŷ labels
in the log space.

I We adopt the self-restriction strategy[PXS17a] by adding a baseline
summary S̄, which is generated by Greedy algorithm on P(y )

I It only positively reward summaries which are better than the baseline.
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Overview of All Methods | 14

Categ. Methods
Sent. Scor.

Sent. Sel.
Encoder Decoder Loss Func.

BSL Naive MMR Cosine Similarity MMR Select
BSL ExtSum-LG Enc. LG MLP Cross Entropy (CE) Greedy

A + SR Decoder Enc. LG SR Dec. CE Greedy
A + NeuSum Decoder Enc. LG NeuSum Dec. KL Divergence Greedy
B + RdLoss Enc. LG MLP CE + Red. Loss1 Greedy
C + Trigram Blocking Enc. LG MLP CE Trigram Blocking
C + MMR-Select Enc. LG MLP CE MMR Select
C + MMR-Select+ Enc. LG MLP CE + Red. Loss2 MMR Select



Experiment | 15

I Dataset: Pubmed, arXiv
I Metric for informativeness: ROUGE-1,2, L
I Metric for redundancy: Unique N-gram Ratio, NID

0All the hyper-parameter settings can be found in the paper.
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Informativeness & Redundancy With MMR-Select | 16

Recall:
MMR-scorei = λP(yi )− (1− λ) max

sj ∈Ŝ
Sim(si , sj )

To explore the balance between informativeness and non-redundancy,
we finetune λ in MMR-Select on the validation set.

Findings:

I Consistent with previous work[JKMH19], there is a trade-off between
informativeness and non-redundancy.

I There is an upper bound on how much the generated summary can match the
ground-truth summary.

I The redundancy in the generated summary continued to increase as the
redundancy component weigh less.
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Experiment Results - Redundancy | 17

Findings:

I Trigram Blocking makes the largest improvement on redundancy reduction

I Almost all the methods can effectively reduce redundancy except for SR
Decoder.

I By injecting the RL mechanism, the MMR-Select+ works better than
MMR-Select, especally on the Pubmed dataset.
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Experiment Results - Informativeness | 18

Findings:

I The three new methods can reduce redundancy significantly while also
improving the informativeness significantly.

I Both Trigram Blocking and NeuSum Decoder effectively reduce redundancy,
but hurt the informativeness, contrast with the exp. on news. [LL19][ZYW+18]

I Compared with MMR-Select, MMR-Select+ works better on both redundancy
and informativeness aspects.
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Conclusion | 19

I We find that longer documents tend to be more redundant, by
examining large-scale summarization datasets

I We systematically explore and compare existing and newly proposed
redundancy reduction methods in extractive summarization for long
documents

I With the new redundancy reduction methods, the new model beats the
original SOTA model on both informativeness and redundancy
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Future Work | 20

I Do experiments with generating summaries at finer granularity than
sentences (sub-sentences, EDUs, etc.)

I Explore the methods on short documents, i.e. news articles.
I When considering redundancy in the loss function, use a pre-trained

neural model to compute the similarity between sentences, instead of
cosine similarity

I Human evaluation
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