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I Discourse Tree: a document-level tree, reflects the structure,
relationship and importance (nuclearity) of the document.
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I Extractive Summarization: pick the most important text units to
represent the whole document.
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Motivation | 1

Discourse tree is important for extractive summarization task:
I It is shown to be a good indicator of importance in text in

unsupervised method. [Mar99]
I When added to neural summarizers, it helps improving the

performance. [XGCL20]
I When used as fixed attention to replace the learnt self-attentions in

transformer-based summarizer, it can achieve competitive
performance.[XHC20]
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Q: Do Extractive Summarizers Learn Discourse Information?
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Idea | 2

Build discourse trees based on the attention matrices of trained extractive
summarization model, and verify whether and how they are aligned with
human-annotated discourse trees.
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Pipeline | 3

I Step 0: Train a transformer-based extractive summarizer
I Step 1: Get the attention matrices from the summarizer for any input

document
I Step 2: Use the attention matrices to build the discourse trees
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Step 0: Train the Neural Summarizer | 4

I Structure:

> BERT EDU Encoder: get EDU representations from pre-trained BERT
> Transformer-based Document Encoder: encode all the EDUs in the

document
> Decoder: a classifier to predict the score whether each EDU should be

picked

I Dataset: CNNDM and NYT
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Step 1: Get Attentions | 5

For any input document, we use two kinds of attention matrices
I Average attention matrices for each layer
I Attention matrices from all heads across all layers
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Step 2: Build Discourse Trees | 6

We build two kinds of discourse trees from the attention matrices:

I Constituency Tree (structure only): to explore whether the structure
information is captured

I Dependency Tree (projective/non-projective): to explore whether
the dependency relationship between EDUs is captured
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Step 2(a) - Build Constituency Trees | 7

I CKY Algorithm[JM14]: a dynamic programming algorithm, build
constituency tree in a bottom-up way.
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Step 2(b) - Build Dependency Trees | 8

I Eisner Algorithm[Eis96]: a dynamic programming algorithm, build
dependency tree in a bottom-up way, can only produce projective
trees.

I CLE Algorithm[CL65, Edm67]: proposed to find the maximum
spanning tree in the graph, and can produce both projective or
non-projective trees.
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Make Use of the Natural Structure of Documents | 9

Sentence Constraint: units within the same sentence are aggregated
before connecting with the units outside the sentence boundary
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Sentence Constraint: units within the same sentence are aggregated
before connecting with the units outside the sentence boundary
I CKY Algorithm / Eisner Algorithm: simply ignore options that do not

meet the constraint

I CLE Algorithm: construct and apply CLE on a sentence-level graph
first, and then apply CLE within each sentence.
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Experiments | 10

I Settings of summarizer:
> 2 Layer, 1 Head
> 2 Layer. 8 Head
> 6 Layer, 8 Head

I Discourse datasets with human-annotated discourse trees:
Dataset # Docs #EDU/doc #Sent/doc #words/doc

RST-DT[COM02] 385 56.6 22.5 549
Instruction[SDE09] 176 32.7 19.5 318

GUM[Zel17] 127 107 45 874

I Evaluation metric:
> Constituency Tree:

RST-Parseval Score =
# correct spans

# total spans

> Dependency Tree:

Unlabeled Attachment Score =
# correct dependencies

# total dependencies
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Experiments - Overall | 11

Model
CKY Eisner CLE

No Cons. Sent Cons. No Cons. Sent Cons. No Cons. Sent Cons.
RSTDT

CNNDM-2-1 61.2 / 59.7 76.2 / 74.6 23.7 / 4.8 28.2 / 18.2 21.6 / 1.5 29.3 / 19.6
CNNDM-6-8 60.3 / 60.8 75.4 / 75.0 7.9 / 20.5 13.8 /27.8 7.3 / 17.3 16.1 / 28.5

Random 58.6 (0.1) 74.1 (0.1) 11.2 (0.2) 20.3 (0.2) 1.7 (0.08) 18.7 (0.1)

I Attention Matrices: the average attention matrices of the first two layers

I Both dependency and structural discourse information is learned
implicitly in the summarization model

I More dependency information is captured, compared with the
structural information.
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Experiments - Per head (Dependency - CLE) | 12

I Attention Matrices: the attention matrix from each head

I Discourse information is typically concentrated in a single head.
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Experiments - Analysis of the Generated Trees (Best Head)
| 13

Measurement(%) No Cons. Sent Cons.
RST-DT

Local Ratio Corr. 77.78 79.17
Instruction

Local Ratio Corr. 81.15 84.90
GUM

Local Ratio Corr. 77.99 80.20

Local Ratio Corr. = # correctly predicted local dependencies
# correctly predicted dependencies

I The attention matrix works better on capturing the local dependencies
(adjacent EDUs), meanwhile it also covers long distance discourse
dependencies.
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Experiments - Analysis of the Generated Trees (Best Head)
| 14

Branch Height Leaf Arc vac. (%)
RST-DT

Ours(No Cons) 1.74 25.76 0.49 0.12 3%
Ground-truth Tree 2.10 8.19 0.51 0.13 2%

Instruction
Ours(No Cons) 1.80 14.35 0.50 0.14 3%

Ground-truth Tree 1.59 8.49 0.41 0.15 1%
GUM

Ours(No Cons) 2.14 43.08 0.54 0.08 0%
Ground-truth Tree 2.02 12.17 0.51 0.04 0%

I The structure properties of our trees are similar to the ground-truth
properties in regards to all measures except for the height of the tree
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Conclusion | 15

Answer to the question: The extractive summarization models do learn
discourse information implicitly
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Answer to the question: The extractive summarization models do learn
discourse information implicitly
I More dependency information is learnt than constituency structural

information.

I Most of the discourse information is concentrated on a single head.
I The generated trees have similar properties as the ground-truth trees,

and it can capture not only local dependencies, but also long-distance
dependencies.

I The consistent results across datasets and models suggest that the
learned discourse information is general and transferable inter-domain.
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Thanks!
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