

Predicting Discourse Trees from Transformer-based Neural Summarizers

Wen Xiao, Patrick Huber and Giuseppe Carenini

University of British Columbia

Discourse Tree

Extractive Summarization

1

Wen Xiao, Patrick Huber and Giuseppe Carenini Discourse Parsing From Summarizer

Discourse Tree: a document-level tree, reflects the structure, relationship and importance (nuclearity) of the document.

1

Wen Xiao, Patrick Huber and Giuseppe Carenini Discourse Parsing From Summarizer

Extractive Summarization: pick the most important text units to represent the whole document.

1

1

Discourse tree is important for extractive summarization task:

- It is shown to be a good indicator of importance in text in unsupervised method. [Mar99]
- When added to neural summarizers, it helps improving the performance. [XGCL20]
- When used as fixed attention to replace the learnt self-attentions in transformer-based summarizer, it can achieve competitive performance.[XHC20]

Q: Do Extractive Summarizers Learn Discourse Information?

1

Build discourse trees based on the attention matrices of trained extractive summarization model, and verify whether and how they are aligned with human-annotated discourse trees.

Step 0: Train a transformer-based extractive summarizer

- Step 0: Train a transformer-based extractive summarizer
- Step 1: Get the attention matrices from the summarizer for any input document

- Step 0: Train a transformer-based extractive summarizer
- Step 1: Get the attention matrices from the summarizer for any input document
- Step 2: Use the attention matrices to build the discourse trees

Wen Xiao, Patrick Huber and Giuseppe Carenini Discourse Parsing From Summarizer

> BERT EDU Encoder: get EDU representations from pre-trained BERT

Structure:

- > BERT EDU Encoder: get EDU representations from pre-trained BERT
- > Transformer-based Document Encoder: encode all the EDUs in the document

Structure:

- > BERT EDU Encoder: get EDU representations from pre-trained BERT
- > Transformer-based Document Encoder: encode all the EDUs in the document
- Decoder: a classifier to predict the score whether each EDU should be picked

Structure:

- > BERT EDU Encoder: get EDU representations from pre-trained BERT
- > Transformer-based Document Encoder: encode all the EDUs in the document
- Decoder: a classifier to predict the score whether each EDU should be picked
- Dataset: CNNDM and NYT

Step 1: Get Attentions

For any input document, we use two kinds of attention matrices

- Average attention matrices for each layer
- Attention matrices from all heads across all layers

Step 2: Build Discourse Trees

We build two kinds of discourse trees from the attention matrices:

Step 2: Build Discourse Trees

We build two kinds of discourse trees from the attention matrices:

Constituency Tree (structure only): to explore whether the structure information is captured

Step 2: Build Discourse Trees

We build two kinds of discourse trees from the attention matrices:

- Constituency Tree (structure only): to explore whether the structure information is captured
- Dependency Tree (projective/non-projective): to explore whether the dependency relationship between EDUs is captured

Step 2(a) - Build Constituency Trees

CKY Algorithm[JM14]: a dynamic programming algorithm, build constituency tree in a bottom-up way.

Step 2(a) - Build Constituency Trees

 CKY Algorithm[JM14]: a dynamic programming algorithm, build constituency tree in a bottom-up way.

Step 2(b) - Build Dependency Trees

Projective:

Non-Projective:

Wen Xiao, Patrick Huber and Giuseppe Carenini Discourse Parsing From Summarizer

8

Step 2(b) - Build Dependency Trees

Eisner Algorithm[Eis96]: a dynamic programming algorithm, build dependency tree in a bottom-up way, can only produce projective trees.

Step 2(b) - Build Dependency Trees

- Eisner Algorithm[Eis96]: a dynamic programming algorithm, build dependency tree in a bottom-up way, can only produce projective trees.
- CLE Algorithm[CL65, Edm67]: proposed to find the maximum spanning tree in the graph, and can produce both projective or non-projective trees.

Make Use of the Natural Structure of Documents

Sentence Constraint: units within the same sentence are aggregated before connecting with the units outside the sentence boundary

Make Use of the Natural Structure of Documents

Sentence Constraint: units within the same sentence are aggregated before connecting with the units outside the sentence boundary

CKY Algorithm / Eisner Algorithm: simply ignore options that do not meet the constraint

Make Use of the Natural Structure of Documents

Sentence Constraint: units within the same sentence are aggregated before connecting with the units outside the sentence boundary

- CKY Algorithm / Eisner Algorithm: simply ignore options that do not meet the constraint
- CLE Algorithm: construct and apply CLE on a sentence-level graph first, and then apply CLE within each sentence.

Discourse Parsing From Summarizer

Wen Xiao, Patrick Huber and Giuseppe Carenini Discourse Parsing From Summarizer

- Settings of summarizer:
 - > 2 Layer, 1 Head
 - > 2 Layer. 8 Head
 - > 6 Layer, 8 Head

Settings of summarizer:

- > 2 Layer, 1 Head
- > 2 Layer. 8 Head
- > 6 Layer, 8 Head

Discourse datasets with human-annotated discourse trees:

Dataset	# Docs	#EDU/doc	#Sent/doc	#words/doc
RST-DT[COM02]	385	56.6	22.5	549
Instruction[SDE09]	176	32.7	19.5	318
GUM[Zel17]	127	107	45	874

Settings of summarizer:

- > 2 Layer, 1 Head
- > 2 Layer. 8 Head
- > 6 Layer, 8 Head
- Discourse datasets with human-annotated discourse trees:

Dataset	# Docs	#EDU/doc	#Sent/doc	#words/doc
RST-DT[COM02]	385	56.6	22.5	549
Instruction[SDE09]	176	32.7	19.5	318
GUM[Zel17]	127	107	45	874

Evaluation metric:

> Constituency Tree:

RST-Parseval Score =
$$\frac{\# \text{ correct spans}}{\# \text{ total spans}}$$

> Dependency Tree:

Unlabeled Attachment Score =
$$\frac{\# \text{ correct dependencies}}{\# \text{ total dependencies}}$$

Experiments - Overall

Model	CKY		Eisner		CLE	
	No Cons.	Sent Cons.	No Cons.	Sent Cons.	No Cons.	Sent Cons.
	RSTDT					
CNNDM-2-1	61.2 / 59.7	76.2 / 74.6	23.7 / 4.8	28.2 / 18.2	21.6 / 1.5	29.3 / 19.6
CNNDM-6-8	60.3 / 60.8	75.4 / 75.0	7.9 / 20.5	13.8 /27.8	7.3 / 17.3	16.1 / 28.5
Random	58.6 (0.1)	74.1 (0.1)	11.2 (0.2)	20.3 (0.2)	1.7 (0.08)	18.7 (0.1)

Attention Matrices: the average attention matrices of the first two layers

Experiments - Overall

Model	CKY		Eisner		CLE	
	No Cons.	Sent Cons.	No Cons.	Sent Cons.	No Cons.	Sent Cons.
		RSTDT				
CNNDM-2-1	61.2 / 59.7	76.2 / 74.6	23.7 / 4.8	28.2 / 18.2	21.6 / 1.5	29.3 / 19.6
CNNDM-6-8	60.3 / 60.8	75.4 / 75.0	7.9 / 20.5	13.8 /27.8	7.3 / 17.3	16.1 / 28.5
Random	58.6 (0.1)	74.1 (0.1)	11.2 (0.2)	20.3 (0.2)	1.7 (0.08)	18.7 (0.1)

- Attention Matrices: the average attention matrices of the first two layers
- Both dependency and structural discourse information is learned implicitly in the summarization model

Experiments - Overall

Model	CKY		Eisner		CLE	
	No Cons.	Sent Cons.	No Cons.	Sent Cons.	No Cons.	Sent Cons.
		RSTDT				
CNNDM-2-1	61.2 / 59.7	76.2 / 74.6	23.7 / 4.8	28.2 / 18.2	21.6 / 1.5	29.3 / 19.6
CNNDM-6-8	60.3 / 60.8	75.4 / 75.0	7.9 / 20.5	13.8 /27.8	7.3 / 17.3	16.1 / 28.5
Random	58.6 (0.1)	74.1 (0.1)	11.2 (0.2)	20.3 (0.2)	1.7 (0.08)	18.7 (0.1)

- Attention Matrices: the average attention matrices of the first two layers
- Both dependency and structural discourse information is learned implicitly in the summarization model
- More dependency information is captured, compared with the structural information.

Experiments - Per head (Dependency - CLE)

Attention Matrices: the attention matrix from each head

Experiments - Per head (Dependency - CLE)

- Attention Matrices: the attention matrix from each head
- Discourse information is typically concentrated in a single head.

Measurement(%)	No Cons.	Sent Cons.					
RST-DT							
Local Ratio Corr.	77.78	79.17					
Instruction							
Local Ratio Corr. 81.15 84.90							
GUM							
Local Ratio Corr.	77.99	80.20					

Local Ratio Corr. = # correctly predicted local dependencies # correctly predicted dependencies

Measurement(%)	No Cons.	Sent Cons.					
RST-DT							
Local Ratio Corr.	77.78	79.17					
Instruction							
Local Ratio Corr.	81.15	84.90					
GUM							
Local Ratio Corr.	77.99	80.20					

Local Ratio Corr. = # correctly predicted local dependencies # correctly predicted dependencies

The attention matrix works better on capturing the local dependencies (adjacent EDUs), meanwhile it also covers long distance discourse dependencies.

	Branch	Height	Leaf	Arc	vac. (%)		
RST-DT							
Ours(No Cons)	1.74	25.76	0.49	0.12	3%		
Ground-truth Tree	2.10	8.19	0.51	0.13	2%		
Instruction							
Ours(No Cons)	1.80	14.35	0.50	0.14	3%		
Ground-truth Tree	1.59	8.49	0.41	0.15	1%		
GUM							
Ours(No Cons)	2.14	43.08	0.54	0.08	0%		
Ground-truth Tree	2.02	12.17	0.51	0.04	0%		

	Branch	Height	Leaf	Arc	vac. (%)		
RST-DT							
Ours(No Cons)	1.74	25.76	0.49	0.12	3%		
Ground-truth Tree	2.10	8.19	0.51	0.13	2%		
Instruction							
Ours(No Cons)	1.80	14.35	0.50	0.14	3%		
Ground-truth Tree	1.59	8.49	0.41	0.15	1%		
GUM							
Ours(No Cons)	2.14	43.08	0.54	0.08	0%		
Ground-truth Tree	2.02	12.17	0.51	0.04	0%		

The structure properties of our trees are similar to the ground-truth properties in regards to all measures except for the height of the tree

Answer to the question: The extractive summarization models do learn discourse information implicitly

More dependency information is learnt than constituency structural information.

- More dependency information is learnt than constituency structural information.
- Most of the discourse information is concentrated on a single head.

- More dependency information is learnt than constituency structural information.
- Most of the discourse information is concentrated on a single head.
- The generated trees have similar properties as the ground-truth trees, and it can capture not only local dependencies, but also long-distance dependencies.

- More dependency information is learnt than constituency structural information.
- Most of the discourse information is concentrated on a single head.
- The generated trees have similar properties as the ground-truth trees, and it can capture not only local dependencies, but also long-distance dependencies.
- The consistent results across datasets and models suggest that the learned discourse information is general and transferable inter-domain.

Thanks!

Wen Xiao, Patrick Huber and Giuseppe Carenini Discourse Parsing From Summarizer

References I

- Y. Chu and T. Liu, *On the shortest arborescence of a directed graph*, 1965.
- Lynn Carlson, Mary Ellen Okurowski, and Daniel Marcu, *Rst discourse treebank*, Linguistic Data Consortium, University of Pennsylvania, 2002.
- Jack Edmonds, Optimum branchings, 1967.
- Jason M. Eisner, *Three new probabilistic models for dependency parsing: An exploration*, COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics, 1996.
- - Dan Jurafsky and James H Martin, *Speech and language processing*, vol. 3, Pearson London, 2014.
 - Daniel Marcu, *Discourse Trees are Good Indicators of Importance in Text*, Advances in Automatic Text Summarization (1999), 123–136.

References II

- Rajen Subba and Barbara Di Eugenio, *An effective discourse parser that uses rich linguistic information*, Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, 2009, pp. 566–574.
- Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu, *Discourse-aware neural extractive text summarization*, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (Online), Association for Computational Linguistics, July 2020, pp. 5021–5031.
- Wen Xiao, Patrick Huber, and Giuseppe Carenini, *Do we really need that many parameters in transformer for extractive summarization? discourse can help !*, Proceedings of the First Workshop on Computational Approaches to Discourse (Online), Association for Computational Linguistics, November 2020, pp. 124–134.

References III

Amir Zeldes, *The GUM corpus: Creating multilayer resources in the classroom*, Language Resources and Evaluation **51** (2017), no. 3, 581–612.

