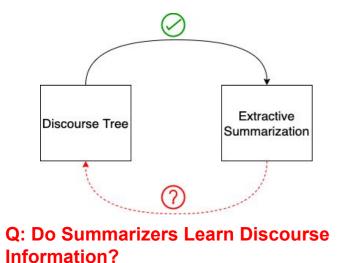
Predicting Discourse Trees from Transformer-based Neural Summarizers

Wen Xiao, Patrick Huber and Giuseppe Carenini Department of Computer Science, University of British Columbia xiaowen3@cs.ubc.ca

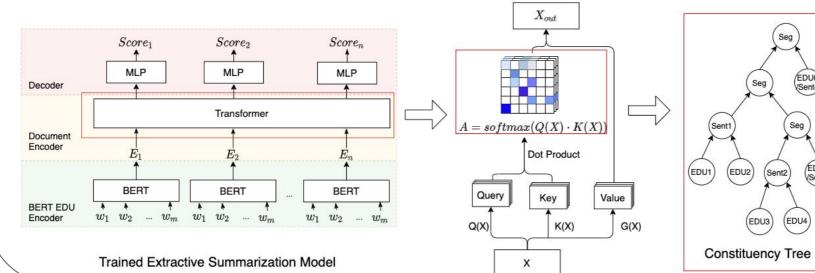
Motivation

Discourse tree is important for extractive summarization task. [1]



Idea: Does Summarizers' Attention Align with Human-annotated Trees?

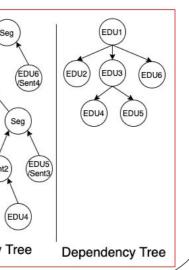
1. Build discourse trees based on the attention matrices of trained extractive summarization model. 2. Verify whether and how they are aligned with human-annotated discourse trees.



Step 0: Train Summarizer **Step 2: Build Discourse Trees** Settings **Constituency Tree Generation Dependency Tree Generation** Structure: Datasets: RST-DT, Instruction, GUM **BERT EDU Encoder Evaluation Metric:** Eisner Algorithm: dynamic programming alg., Transformer-based CKY Algorithm: dynamic programming. Constituency Tree: RST-Parseval S Document Encoder can only produce projective trees. bottom-up alg. - Dependency Tree: Unlabeled Decoder **CKY Matrix** Attachment Score Attention Matrix CLE Algorithm: find the maximum spanning Dataset: CNNDM, NYT **Constraints:** tree in the graph, and can produce both - No Constraint / Sentence Constrain projective or non-projective trees. A31 A3 **Step 1: Get Attentions** A Localness (Best Head) A 13 Projective: EDU1 EDU2 EDU3 EDU4 EDU5 A53 A54 Measurement(%) | No Cons. | Sent Cons. RST-DT 1. Average over each layer EDU1 EDU2 EDU3 EDU4 EDU5 79.17 Local Ratio Corr. 77.78 2. Attention matrices per head Instruction $EDU_1 EDU_2 EDU_3 EDU_4 EDU_5$ 84.90 Local Ratio Corr. 81.15 Non-Projective: per layer GUM Local Ratio Corr. 77.99 80.20

[1] Daniel Marcu, Discourse Trees are Good Indicators of Importance in Text, Advances in Automatic Text Summarization (1999)

JBC



Conclusion

A: Extractive summarization models do learn discourse information implicitly

- More dependency information is learnt

- Most of the discourse information is concentrated on a single head.

- The generated trees have similar properties as the ground-truth trees, as they both can capture both local dependencies and long-distance dependencies.

- The results are consistent across datasets and models \rightarrow the learned discourse information is general and transferable inter-domain.

Experiments

	Ove	rall										
1		odel	CKY				E	isner	С			
		Jael	No Cons.		Sent Cons.		No Cons.	Sent Cons.	No Cons. S		Sent Cons.	
-	RSTDT											
Score	CNNI	CNNDM-2-1		1.2/59.7 76.2/74.6		3.7 / 4.8 28.2 / 18.2		21.6 / 1.5 29.3		3/19.6		
	CNNI	CNNDM-6-8		0.8 75.4 / 75.0		.9 / 20.5	13.8 /27.8	7.3/17.3	16.1	/ 28.5		
	Rar	Random		58.6 (0.1) 74.1 (0.		(0.1) 1	1.2 (0.2)	20.3 (0.2)	1.7 (0.08)	0.08) 18.7 (0.1)		
nt	Structure Properties (Best Head)						гe	RSTDT Instruction			GUM	
		Branch	Height	Leaf	Arc	vac. (%)		Max: 27.56 Min: 0.27 Avg: 3.04	Max: 34.53 Min: 1.00 A	wg: 4.14	Max: 23.02 Min: 0.22 Avg: 1.87	
RST-DT Ours(No Cons) 1.74 25.76 0.49 0.12							No					
(Ours(No Cons)		25.76	0.49	0.12	3%	Constraint	Layer	Layer		Layer	
Ground	Ground-truth Tree 2.10		8.19 struction	0.51	0.13 2%		-	Head	Head		Head	
Ours(N	Ours(No Cons) 1.80			0.50	0.14	3%	-	Max: 34.13 Min: 10.03 Avg: 18.59	Max: 41.45 Min: 9.30 A	wg: 17.99	Max: 30.54 Min: 10.62 Avg: 16	
	Ground-truth Tree		8.49	0.41	0.15	1%						
	GUM							5	Tayler			
			GOIN				Constraint				8	
	No Cons) -truth Tree	2.14	43.08	0.54 0.51	0.08	0% 0%	_ Constraint		Lay and Lay		raye	

* More detailed results and analysis on generated trees can be found in the paper